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a b s t r a c t 

Although the optimal margin distribution machine (ODM) has better generalization performance in pat- 

tern recognition than traditional classifiers, ODM as well as traditional classifiers often suffers from data 

imbalance. To address this, this paper proposes a kernel modified ODM (KMODM) to eliminate the side 

effect of imbalanced data. According to the mechanism of ODM, a novel conformal function is designed 

to scale the kernel matrix of ODM, this can increases the separability of the training data in the feature 

space. In addition, to eliminate the skew of the separator toward minority class, KMODM introduces two 

free parameters in conformal function to balance the influence of different training data on separating 

hyperplane. Experimental results on two-dimensional visualization data show that KMODM can alleviate 

the skew of the separating hyperplane caused by imbalanced data. For most of ten UCI data sets, KMODM 

can broad the margin of the minority class and achieve the highest average G-mean and F1 score. This 

means that KMODM has more balanced detection rate and better generalization performance compared 

to other baseline methods, especially in presence of heavily imbalanced training data. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In data mining and pattern recognition tasks, data imbalance is

 common problem that the examples of a certain class are out-

umbered by another class or all other classes [1–3] . In this case,

f adopting the conventional classification algorithms such as the

upport vector machine (SVM), the detection rate of a majority

lass is much higher than that of a minority class. The conventional

lassifiers aim at improving the overall classification accuracy even

n presence of imbalanced data. The majority classes are treated

qually with the minority class. This leads to the separating hyper-

lane skewed toward minority classes [4] , and results in a decrease

f the detection accuracy of the minority class and deterioration of

eneralization performance of classifiers [5] . Therefore, one of the

ey issues is how to balance the detection accuracy of each class

nd obtain better generalization performance of classifier simul-

aneously in imbalanced data classification. At present, the com-
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hors and that there are no other persons who satisfied the criteria for authors- 

hip but are not listed. We further confirm that the order of authors listed in the 
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only used methods to balance the detection rate can be simply

ivided into four categories: kernel modification, data resampling,

ost sensitive and post-processing methods. A brief introduction of

hese methods is given below. 

To obtain a balanced training data, the resampling methods

ither oversample the minority classes [6-7] , or undersample

he majority classes [8] , or synthesize them both. The difference

mong these methods is that the strategies used in the resampling

rocess. For example, to improve the synthetic minority over-

ampling technique (SMOTE) [6] , a weighted kernel-based SMOTE

WKSMOTE) was proposed in [7] to increase the number of mi-

ority examples by oversampling the minority examples in kernel

pace. In [8] , clustering technique was introduced to balance the

umber of training data in the undersampling process. However,

he data resampling process is unavoidable to introduce noise

oversampling) to or eliminate some useful information (under-

ampling) from the training data. It thus leads to the performance

egradation of the classifier. Instead of balancing the number of

raining data directly, the cost-sensitive methods balance the in-

uence of imbalanced data by assigning different misclassification

enalty factors to the training data with different labels [9–12] .

ase on cost-sensitive strategy, a lot of classifiers have been pro-

osed including Cost-Sensitive SVM (CSSVM) [9-10] , Cost-Sensitive

xtreme Learning Machine (CSELM) [11] and Large Cost-Sensitive

https://doi.org/10.1016/j.patrec.2019.05.005
http://www.ScienceDirect.com
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Margin Distribution Machine (LCSDM) [5] , which have achieved

great successes. In particular, the LCSDM proposed in [5] combines

cost-sensitive method with the latest LDM classifier, which can

obtain a more balanced detection rate by increasing the margin

distribution of the minority class. The cost sensitive based meth-

ods are aimed at minimize the misclassification costs without

changing the spatial distribution of the training data, it determines

the influence weight of training data by adjusting the Lagrange

multiplier α of the classifier. In fact, the effect of this method is

limited because the penalty factor is used only as the upper bound

of α according to the KKT conditions [13] . This increase of the

misclassification penalty does not necessarily affect α. Recently, a

post-processing method [14] is proposed to eliminate the skewness

of separator toward minority class by adjusting the trained bias

according to the imbalance rate of training data. Since this method

neither introduces new parameters nor changes the optimization

process of the original classifier, it is relatively easy to imple-

ment. However, once the separator is determined, this method

controls the separator position instead of optimizing separator

shape. 

Unlike the above-mentioned techniques, the kernel modifi-

cation methods change the distribution of training data in the

feature space to eliminate the skewness of the separator by mod-

ifying the kernel function or the kernel matrix of the classifier.

The conformal transformation of the kernel function is one of the

most common kernel modification methods [15-16] , because it can

increase the space resolution in the area of the class boundary and

improve separability of training data in the feature space. In recent

years, various revisions of conformal functions were proposed to

improve the kernel modification method for imbalanced data

classification [4,13,17-18] . These conformal functions can enhance

the mapping ability of kernel function. For example, a simple form

of conformal function which only considers the margin and im-

balance rate of training data is proposed in [17] . Consequently, it

has excellent performance for imbalanced data classification when

combined with SVM. The kernel modification method avoids the

operations that may decrease the overall performance and compu-

tation efficiency of classifiers. These operations include resampling

training data and assigning misclassification penalty factors. Thus,

it is more suitable for improving classifiers for imbalanced data. 

However, since the conformal function of kernel modification

method generally designed for conventional classifiers like SVM.

From the margin theory [19-20] , only learn the minimum mar-

gin without optimizing the margin distribution always leads to the

poor generalization performance of SVM. Thus, the optimal margin

distribution machine (ODM) [21–23] is proposed to optimize the

margin distribution. It was proved that ODM has better generaliza-

tion performance in the balanced data classification than conven-

tional classifiers. However, ODM still fails to deal with imbalanced

data and the conformal function of kernel scaling method designed

for SVM is not suitable for ODM. 

To improve the performance of ODM on imbalanced data clas-

sification, this paper proposes a novel ODM algorithm based on

kernel modification (KMODM). We design a new conformal func-

tion to improve the kernel modification methods for ODM. Tun-

ing two free parameters in the new conformal function, KMODM

is able to increase the space resolution of class boundary and the

influence of the minority class on final separator. For simplicity, we

discuss only the binary classifier for imbalanced data in this paper.

This paper is organized as follows. The related works are reviewed

in Section 2 , including a brief introduction to the ODM and ker-

nel scaling method. The proposed conformal function and KMODM

are described in Section 3 . The experiment results of KMODM and

comparison with other methods are presented in Section 4 . In

Section 5 , conclusions are drawn and some suggestions of the fu-

ture work are given. 
. Related works 

The ODM classifier and kernel scaling method will be briefly

eviewed in this section. 

.1. Optimal margin distribution machine (ODM) 

For the nonlinear separable case, the conventional classifiers

ike SVM, introduce a kernel function K( x i , x j ) = ϕ ( x i ) ϕ ( x j ) to map

he training data in the input space to a high-dimensional feature

pace for better data separability, where ϕ is a mapping function.

he core of conventional classifiers (such as SVM) is to maximize

he minimum margin. For a given classifier y = ω 

T ϕ(x ) , where ω
s a linear classifier, the margin between example ( x i , y i ) and the

eparator is defined as: 

f ( x i ) = γi = y i ω 

T ϕ( x i ) , ∀ i = 1 , 2 , . . . , m, (1)

here, m is the number of training examples. The object function

f SVM is given as: 

min 

ω,ξ

1 

2 

ω 

T ω + C 

m ∑ 

i =1 

ξi 

s.t. y i ω 

T ϕ( x i ) ≥ 1 − ξi 

ξi ≥ 0 , i = 1 , 2 , . . . , m (2)

here ξ is the slack variable denotes the loss of examples, C is

isclassification penalty factor. Since the SVM optimizes only the

inimum margin and ignores the margin distribution of training

ata, it may have poor generalization performance and cannot ob-

ain the optimal separating hyperplane. According to the margin

heory in [20] , optimizing the margin distribution is more im-

ortant than optimizing the minimum margin for improving the

erformance of a classifier. According to the margin definition in

q. (1) , the margin mean γ̄ and margin variance ˆ γ can be formu-

ated as: 

¯ = 

m ∑ 

i =1 

y i ω 

T ϕ( x i ) = 

1 

m 

(Xy ) 
T ω 

ˆ = 

1 

m 

m ∑ 

i =1 

(
y i ω 

T ϕ( x i ) − γ̄
)2 

= 

1 

m 

ω 

T X X 

T ω − 1 

m 

2 
ω 

T Xy y T X 

T ω (3)

here X = [ ϕ ( x 1 ) , . . . , ϕ ( x m 

)] , y = [ y 1 , . . . , y m 

] T . To reach better

eneralization performance, optimal margin distribution machine

ODM) [22] minimizes the margin variance while maximizing the

argin mean to obtain the optimal margin distribution. Its objec-

ive function is formulated as: 

min 

ω, ξi , ε i 

1 

2 

ω 

T ω + 

1 

m 

m ∑ 

i =1 

(
C 1 ξ

2 
i + C 2 ε 

2 
i 

)
s.t. y i ω 

T φ( x i ) ≥ 1 − S − ξi 

y i ω 

T φ( x i ) ≤ 1 + S + ε i 

ξi ≥ 0 , ε i ≥ 0 , i = 1 , 2 , . . . , m (4)

here ξ i , ɛ i represent the deviation between the margin and mar-

in mean, S is the sparse parameter determining the number of

upport vectors, C 1 and C 2 are the parameters for trading-off the

argin variance of the support vectors located in different areas.

he margin mean of ODM is set to 1 by scaling ‖ ω‖ in Eq. (4) . In-

roducing sparse parameter S and optimizing margin distribution

llows ODM to be better generalization performance than SVM.

owever, ODM still fails to consider the influence of imbalanced

raining data. This paper aims to address this defeat. 
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Fig. 1. Illustration of support vectors of (a) SVM. (b) ODM. green examples repre- 

sent support vectors, h m represents the margin mean hyperplane. 

 

f  

d  

s  

i  

v  

a  

l  

p  

E  

o

 

i  

s  

i  

t  

t  

s  

c  

a  

f

D

w  

a  

m  

K  

d  

i  

t  

w  

c

 

t  

O  

i  

e  

t  

a  

s  

o

 

E

 

 

 

 

 

 

.2. Kernel scaling 

The kernel function of classifier can also be written as

( x i , x j ) = ϕ ( x i ) ϕ ( x j ) . Using the mapping function ϕ, the training

ata in the input space I are embedded into a curved Riemannian

anifold S in a high dimensional feature space F [4] . The Rieman-

ian metric of S is defined as: 

 i j (x ) = 

(
∂ 2 K(x, x ′ ) 
∂ x i ∂ x ′ j 

)
x = x ′ 

, (5) 

 ij ( x ) represents the local volume expansion coefficient of the ad-

acent area of example ( x, y ) in the feature space. It can be seen

n Eq. (5) that the expansion coefficient g ij ( x ) is closely related to

he kernel function K ( x, x ′ ). g ij ( x ) can be changed indirectly by ad-

usting K ( x, x ′ ). A new kernel ˜ K (x, x ′ ) can be obtained using the

onformal transformation and the original kernel function. In or-

er to increase the separability of train data in kernel space, it is

xpected to assign a larger g ij ( x ) to the boundary examples to mag-

ify the spatial resolution of the class boundary [4] . The conformal

ransformation of kernel function can be written as [4] : 

˜ 
 (x, x ′ ) = D (x ) D (x ′ ) K(x, x ′ ) (6)

The conformal function D ( x ) reaches its maximum near the sep-

rating hyperplane. In the case of using RBF as the kernel function,

4] proposed a conformal function to adjust the kernel of SVM ac-

ording to the distance between the example and support vectors:

 (x ) = 

∑ 

k ∈ SV 

exp 

(
−| x − x k | 

ητ 2 
k 

)
(7) 

here SV represents the support vector set, η is the parameter

hich reflects the imbalance rate of training data. Parameter τ 2 
k 

re-

ects the relative position of support vectors in the feature space.

t can be calculated by: 

2 
k = AV G 

i ∈{ ‖ ϕ ( x i ) −ϕ ( x k ) ‖ 2 <M, y i 	 = y k } 
(‖ 

ϕ( x i ) − ϕ( x k ) ‖ 

2 
)

(8) 

In which M is the average distance between support vectors

nd ϕ( x k ). We can see that the conformal function in Eq. (7) is

omplicated and sensitive to the distribution of support vectors.

herefore, a simple form of the conformal function was proposed

n [18] : 

 (x ) = e −k f (x ) 
2 

(9) 

here f ( x ) is the margin of example ( x, y ) defined in Eq. (1) , k is a

ositive constant which controls the value of D ( x ). Since the value

f D ( x ) decreases with the increase of the margin f ( x ), the confor-

al function in Eq. (9) can amplify g ij ( x ) in the area near to the

eparator while reducing it in the area far away from the separa-

or, thus can magnify the spatial resolution of class boundary. 

. Kernel modification of ODM 

This section proposes a novel classifier called kernel modified

DM (KMODM) to inherit the excellent generalization performance

f ODM while effectively handling imbalanced data. 

.1. Construction of the conformal function 

The basic idea of the kernel scaling method is to adjust the ker-

el function according to the margin between the training data and

nitial separator in the feature space. It ensures that the data close

o the initial separator have a larger g ij ( x ), increasing the influence

f such data to the final classification result. In the implementa-

ion of kernel scaling method, conformal function is the key factor

o determine whether the algorithm is effective or not. 
The conformal function in Eq. (7) and Eq. (9) were proposed

or modifying the kernel function of SVM. In these functions, the

istance between the example and initial separating hyperplane or

upport vectors is considered since the separator learned by SVM

s determined by the examples with the smallest margin (support

ectors, SVs). Unlike SVM, in order to optimize the margin vari-

nce, ODM treats the data whose deviation from margin mean is

arger than S as a support vector to determine the separating hy-

erplane, as shown in Fig. 1 . Therefore, the conformal functions in

q. (7) and Eq. (9) are not suitable to modify the kernel function

f ODM. 

From Fig. 1 (b), we can see that the margin mean hyperplane

s used as a baseline to define support vectors of ODM. Since the

pace of ODM’s support vectors is not continuous, it can be divided

nto two subspaces f (x ) ≤ (1 − S) m and f (x ) ≥ (1 + S) m according

o the margin f ( x ). The purpose of kernel modification for ODM is

o gather the training data to h m 

. In other words, D ( x ) should en-

ure that the examples in f (x ) ≤ (1 − S) m have a larger expansion

oefficient and that the examples located in f (x ) ≥ (1 + S) m have

 smaller one. Thus, in this paper, we construct a piecewise con-

ormal function as follows: 

 (x ) = 

{ 

e −K n / (m − f (x )) , f (x ) ≤ (1 − S) m 

e −K f ( f (x ) −m ) , f (x ) ≥ (1 + S) m 

e −K f ·m , else 

(10) 

here S is the sparse parameter of KMODM which is the same

s that of ODM in Eq. (4) , f ( x ) and m are the margin and margin

ean of training examples obtained by ODM respectively, K n and

 f are parameters to control the volume expansion coefficients of

ifferent areas in feature space. When the training data x is located

n the area near to the separating hyperplane ( f (x ) ≤ (1 − S) m ),

he value of D ( x )gradually reduces from 1 to exp ( −K n / (1 − S) m )

ith the margin of x approaching ( 1 − S ) m . Howev er, when x is lo-

ated in the area far away from the separating hyperplane ( f (x ) ≥
(1 + S) m ), D ( x ) gradually reduces from exp (−K f (1 + S) m ) to 0 with

he margin of x approaching ∞ . Because the separator obtained by

DM skews toward the minority class, the margin of most minor-

ty examples are smaller than the margin mean. That is, minority

xamples are generally located in f (x ) ≤ (1 − S) m . In order to ob-

ain a large expansion coefficient in the area in which minority ex-

mples are located, K f should be greater than K n . In this paper, grid

earch and cross validation are used to search the optimal values

f these two parameters. 

Generally speaking, The advantages of using D ( x ) constructed in

q. (10) to adjust the ODM kernel function are as follows: 

(i) D ( x ) amplifies the spatial resolution of the area near to the

class boundary while improving the separability of the train-

ing data in feature space. The examples with a small margin

are generally located at the class boundary. D ( x ) can increase

the expansion coefficient of the area around these examples.

That is, the spatial resolution of the class boundary can be
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Fig. 2. The KMODM algorithm. 
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increased indirectly. The data separability can be improved

effectively. 

(ii) There is no need to consider the problem of data imbalance.

The separator learned by ODM skews toward the minority

class, resulting in that the margin of minority examples is

smaller than the margin mean. Optimizing parameters K n 

and K f in D ( x ), the expansion coefficients of minority exam-

ples will be set to large values automatically, increasing the

influence of minority examples on the final separator. 

3.2. KMODM 

According to Eqs. (6) and (10) , a new kernel function can be

obtained. The original kernel matrix is denoted as K = ( k i j ) , the

new kernel matrix obtained by the conformal transformation is: 

˜ K = ( ̃ k i j ) = D ( x i ) × D ( x j ) × k i j (11)

According to the Mercer theorem, to prove that ˜ K is a valid ker-

nel function, we simply prove that the kernel matrix ˜ K is positive

(semi) definite. The rationality of our work can be verified by the

following corollary. 

Corollary 1. When given a valid kernel matrix K , the new kernel

matrix ˜ K defined in Eqs. (10) and (11) is positive (semi) definite

and a valid kernel matrix. 

Proof. From Eq. (10) , since the range of conformal function is

D ( x ) ≥ 0, we have D ( x i ) D ( x j ) = D ( x j ) D ( x i ) . It is a symmetric func-

tion. For training data x 1 , x 2 , . . . , x n ∈ X and α1 , α2 , . . . , αn ∈ R , we

have: 

n ∑ 

i, j=1 

αi α j D ( x i ) D ( x j ) = 

n ∑ 

i =1 

αi D ( x i ) 
n ∑ 

j=1 

α j D ( x j ) 

= 

( 

n ∑ 

i =1 

αi D ( x i ) 

) 2 

≥ 0 

Thus D ( x i ) D ( x j ) is also a positive (semi) definite function. De-

noting d = ( d 1 , d 2 , . . . , d n ) 
T as an n-dimensional vector with d i =

D ( x i ) , i = 1 , 2 , . . . , n . According to the training data set and positive

(semi) definite function D ( x i ) D ( x j ), a matrix dd 

T is also a positive

(semi) definite matrix. The new kernel matrix ˜ K in Eq. (11) can be

rewritten as the Hadamard product of dd 

T and K : 

˜ K = d d 

T ∗ K . 

K is a valid kernel matrix, which means a positive (semi) definite

matrix. Then according to Schur product theorem, ˜ K is a positive

(semi) definite matrix, and is thus a valid kernel matrix. 

The details of the KMODM algorithm are given in Fig. 2 . We

first apply ODM to the training data to obtain their margin and

the margin mean. The corresponding D(x) of each training exam-

ple is calculated by Eq. (10) to adjust the original kernel matrix K .

The new kernel matrix ˜ K is then obtained. ˜ K is used as the new

kernel matrix of ODM to learn the final separator, resulting in the

KMODM classifier. 

4. Experiments 

The experiments mainly focus on two parts: (1) classifier visu-

alization on two-dimensional data; (2) performance comparisons

with baseline algorithms on UCI data sets. It is worth noting that,

for simplicity, all kernel functions in this section adopt the RBF

function. In fact, when using other kernel functions, similar con-

clusions can also be reached. 
.1. Assessment metrics and experiment data 

We usually denote the minority class as a positive class, and

ajority class as a negative class. The purpose of a classifier de-

igned for imbalanced data is to balance the detection rate of posi-

ive and negative classes. G-mean is generally used to synthetically

valuate the performance of these classifier, it can be formulated

s: 

 − Mean = 

√ 

TP 

TP + FN 

× TN 

TN + FP 

It can also reflect the balance degree of the detection rates of

ifferent classes. In addition, F1 score is widely used to compare

he performance of different classifiers on imbalanced data, and it

s formulated as follows: 

 ecall = 

TP 

TP + FN 

, pr e = 

TP 

TP + FP 

 1 = 

2 pre × recall 

pre + recall 

This paper uses G-mean and F1 score to compare the perfor-

ance of KMODM and other classifiers. 

The standard UCI data sets used in our experiments are shown

n Table 1 . The number after the name of the data set represents

he positive class that we select in the original data set. #exam is

he number of examples in whole data set; #attri represents the

ata dimension; #posi and #nega denote the numbers of positive

nd negative examples, respectively; and IR indicates the imbal-

nced rate of the data set. According to the imbalance rate, all UCI

ata sets in Table 1 are divided into two categories: the lightly im-

alanced data set and heavily imbalanced data set. 
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Table 1 

UCI data sets. 

Dataset # exam #attri # posi / # nega IR 

Lightly 

imbalanced 

breast 683 9 239/4 4 4 1.86 

german 10 0 0 24 30 0/70 0 2.33 

haberman 306 3 81/225 2.78 

glass123 214 9 51/163 3.20 

glass7 214 9 29/185 6.38 

glass3 214 9 17/197 11.60 

Heavily 

imbalanced 

ecoli6 336 7 20/316 15.8 

car3 1728 24 69/1659 24.04 

yeast 1484 8 51/1433 28.10 

abalone19 4177 8 32/4145 129.53 
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Fig. 3. Generated imbalanced data and visualized separators (IR = 10). 

m  

G  

i

4

 

m  

p  

r  

n  

d

4

 

m  

F  

t  
.2. Visualization experiments on two-dimensional data 

In order to illustrate the optimization effect of KMODM to

he separating hyperplane, we generate two-dimensional data with

he normal distribution to construct imbalanced training examples.

oreover, to verify that the D(x) proposed in this paper is more

ffective for the ODM algorithm, the two existing conformal func-

ions in Eqs. (7) and (9) are combined with the ODM respectively,

amed as ODM-7 and ODM-9. Fig. 3 gives a comparison of the sep-

rating hyperplanes learned by ODM [22] , ODM-7, ODM-9, CSSVM

9] , AK SSVM [17] , WK SMOTE [7] , LCSDM [5] and KMODM when

he imbalanced rate of training data is IR = 10. 

As can be seen from Fig. 3 , the separating hyperplane of ODM

eriously skews toward the minority class, resulting in a large

umber of the misclassified positive examples. Several other

aseline algorithms adopt different technologies to optimize the

onventional classifier to alleviate the skew of the separating

yperplane in a certain extent. However, due to the shortcomings

f conventional classifiers and the technologies their adopted, the

erformances of these classifiers are not as good as expected.

or example, the conformal functions of ODM-7 and ODM-9 are

riginally designed for SVM, in which the difference between the

echanism of SVM and ODM has not been considered. Further

ore, the conformal function of ODM-9 does not take into account

he effects of data imbalance, thus the two separators in Fig. 3 (b)

nd (c) are worse than our method. In Fig. 3 (f), the separating

yperplane of WKSMOTE [7] seems to be ideal, but WKSMOTE is

ensitive to the distribution of training data and its performance

s not stable during the experiment. LCSDM [5] is to learn the

lassifier and to optimize the margin distribution based on the

east misclassification loss. The skew of its separating hyperplane

oward the minority classes still exists. In Fig. 3 (h), the proposed

MODM inherits the advantages of the kernel scaling and ODM

nd alleviates the skew of the classifier. Compared with ODM and

ther baseline algorithms, KMODM achieves better generalization

erformance and higher classification accuracy of positive classes. 

Fig. 4 (b)–(e) compares KMODM, ODM and LCSDM on imbal-

nced data with different IRs. Fig. 4 (a) shows the separator learned

y ODM when training data are balanced (IR = 1). It can be seen

hat the separating hyperplane of ODM can correctly detect most

f the data except for several data located in the overlapped

rea between two classes. By under sampling the positive class in

ig. 4 (a), we can get a series of imbalanced train data with dif-

erent IR. Therefore, we consider the ODM on balanced data in

ig. 4 (a) as an approximated ideal classifier. When the IR of the

raining data increases, the closer the separator approaches the

deal classifier, the better robustness the separator is. Fig. 4 (b)–

e) compare the separators of ODM, LCSDM and KMODM when

R changes from 5 to 30. It is obvious that, with the increase of

R, the separating hyperplane of KMODM is closer to that of ideal

lassifier than that of other classifiers. This means that KMODM is

ore robust to the change of IR of training data compared to other
ethods. Similar conclusions can be obtained by the change of the

-mean score when IR increases as shown in Fig. 4 (f). The G-mean

s the average result of 10 repeated experiments. 

.3. Experiments on UCI data sets 

Before reporting the experiment results, all features were nor-

alized into the interval of [0, 1]. For each UCI data set, half exam-

les are randomly selected to compose the training data, and the

est is used as the test data. It is guaranteed that the proportion of

egative and positive examples is equal to IR in both the training

ata and test data. 

.3.1. Comparative study 

In order to verify the performance of KMODM, all classifiers

entioned in Section 4.2 , are selected to compare with KMODM.

or ODM, ODM-7, ODM-9 and KMODM, the regularization parame-

ers C , C are selected from [ 2 0 , . . . , 2 10 ] while their sparse param-
1 2 
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Table 2 

Means and standard deviations of G-mean with RBF kernel. 

ODM[22] ODM-7 ODM-9 CSSVM[9] AKSSVM[17] WKSMOTE[7] LCSDM[5] KMODM 

breast 61.2 ± 4.0 65.3 ± 3.1 62.5 ± 2.0 65.8 ± 4.0 65.5 ± 1.5 66.7 ± 2.1 66.3 ± 3.5 68.9 ± 2.0 

german 73.5 ± 3.1 75.4 ± 2.4 74.1 ± 2.9 74.2 ± 1.6 76.0 ± 2.0 75.9 ± 1.9 75.4 ± 1.4 77.6 ± 1.1 

haberman 64.7 ± 2.4 67.5 ± 1.7 64.5 ± 2.3 66.2 ± 2.0 66.5 ± 0.9 65.8 ± 2.2 68.1 ± 1.9 71.8 ± 1.6 

glass123 87.0 ± 1.6 89.0 ± 2.1 87.7 ± 1.6 88.5 ± 1.7 89.3 ± 5.4 92.7 ± 1.6 89.5 ± 2.7 91.9 ± 2.0 

glass7 89.8 ± 4.1 92.2 ± 1.5 90.0 ± 1.9 91.2 ± 3.1 93.4 ± 1.1 91.8 ± 2.3 91.1 ± 1.5 95.3 ± 1.4 

glass3 21.0 ± 2.5 57.4 ± 2.8 25.1 ± 3.1 48.2 ± 2.3 75.1 ± 6.7 76.5 ± 2.0 68.8 ± 4.9 76.2 ± 3.9 

ecoli6 64.9 ± 2.7 83.1 ± 2.5 73.6 ± 2.3 78.2 ± 3.1 96.5 ± 2.5 95.5 ± 3.1 98.0 ± 1.6 98.9 ± 1.1 

car3 98.5 ± 1.9 98.0 ± 2.3 97.4 ± 1.1 98.2 ± 1.5 98.6 ± 2.1 99.2 ± 1.3 98.7 ± 3.3 99.1 ± 2.1 

yeast 56.9 ± 3.1 78.4 ± 1.8 71.3 ± 2.2 68.2 ± 2.4 81.5 ± 3.2 78.9 ± 1.7 79.3 ± 1.4 83.6 ± 1.8 

abalone19 5.1 ± 3.2 53.2 ± 2.2 13.3 ± 4.1 54.2 ± 3.0 63.9 ± 8.1 59.7 ± 5.2 68.1 ± 5.2 72.9 ± 6.3 

Fig. 4. The influence of different IR of generated data on classifier. 
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eters are fixed to 0.2. The parameters that control the space expan-

sion coefficients of KMODM are optimized by the grid search and

5-fold cross validation from [ 10 −5 , . . . , 10 0 ] . The number of syn-

thetic examples of WKSMOTE is equal to the difference between

the number of the majority class and minority class. The balance

point of LCSDM is fixed to 0.6. Other parameters are set as the

same values as [5] . The parameter selection methods of CSSVM and

AKSSVM are as the same as [9] and [17] , respectively. The width of

the RBF kernel for all methods is selected by 5-fold cross validation

from [ 2 −10 , . . . , 2 5 ] . The experiments on each data set are repeated

30 times and the means and standard deviations of G-mean and

F1 score are reported in Tables 2 and 3 . The bolded data are the

best results. 

From the experiment results, we can see that KMODM has

the highest average G-mean and F1 score on breast, Haberman,

glass7, ecoli6, yeast and abalone19. Although the best results are
ot obtained from other data sets, these results are suboptimal in

ost cases. This indicates that KMODM is superior to other meth-

ds on most data sets. On the heavily imbalanced data sets such

s ecoli6, car3, yeast, and abalone19, KMODM obtains the signif-

cantly improved performance compared with other methods ex-

ept WKSMOTE. It is worth noting that on abalone 19, since the IR

f training examples reached 129.53, it is difficult to detect mi-

ority examples when using ODM, this caused a lower G-mean

core of it. The experimental results show that when RBF is used

s a kernel function, KMODM has better performance than other

lassifiers in most data sets, especially on heavily imbalanced data

ets. In other words, KMODM has higher classification accuracy

nd higher balanced detection rates than other classifiers in most

ases. 

.3.2. Margin distribution 

Fig. 5 shows the cumulative margin distributions of all compet-

ng classifiers with the RBF kernel on German. The similar results

an be obtained on other data sets as well. In Fig. 5 , MD represents

he margin distribution of total examples, PMD represents the mar-

in distribution of positive examples, and the intersection point

f the curve and x axis represents the corresponding minimum

argin. The larger value of the minimum margin and the more

ight the curve represent the better generalization performance of

 classifier. 

As we can see from Fig. 5 , compared with ODM, KMODM suf-

ers from a certain loss of overall generalization performance, but

t has better positive generalization performance. This is because

he proposed kernel modification method increases the spatial

esolution of the regions where positive examples are located. It

lso results in the separating hyperplane offset to negative class.

ompared with the margin distributions of other algorithms in

ig. 5 (b)-(g), it is obvious that the generalization performance of

MODM is better. In Fig. 5 (g), the LCSDM algorithm also broads

he margin of the minority class. Since the LDM algorithm adopted

n LCSDM also optimizes the margin distribution like ODM,

CSDM and KMODM have a slight difference in generalization

erformance. 

.3.3. CPU time cost 

All experiments in this paper are performed with matlab2014a

n the computer with 2 × 3.3 GHz CPUs and 4GB memory. We

ompared CPU time of ODM, ODM-7, ODM-9, CSSVM, AKSSVM,

KSMOTE, LCSDM and KMODM on different UCI data sets. With-

ut the time of grid search and five-fold cross-validation to search

he optimal value of parameters, the average time cost of each al-

orithm is shown in Fig. 6 . Since ODM is executed two times in

MODM, the computation cost of KMODM is higher than that of

DM. However, compared with other baseline algorithms, espe-

ially ODM-7, CSSVM and LCSDM, KMODM shows a significantly

ow computation cost. These results also illustrate that KMODM is

omputationally efficient. 
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Table 3 

Means and standard deviations of F1 score with RBF kernel. 

Dataset ODM[22] ODM-7 ODM-9 CSSVM[9] AKSSVM[17] WKSMOTE[7] LCSDM[5] KMODM 

breast 72.1 ± 2.3 78.2 ± 1.1 72.0 ± 3.0 69.4 ± 2.1 74.2 ± 2.1 76.6 ± 2.5 75.4 ± 2.4 79.7 ± 2.0 

german 74.6 ± 2.4 76.9 ± 2.5 73.2 ± 2.1 76.3 ± 1.8 77.8 ± 2.3 78.4 ± 1.9 78.2 ± 2.7 77.4 ± 2.2 

haberman 65.7 ± 2.2 68.7 ± 1.8 66.0 ± 2.4 67.2 ± 2.0 69.5 ± 1.8 69.4 ± 2.5 70.3 ± 1.7 71.6 ± 1.9 

glass123 83.4 ± 1.5 86.6 ± 2.3 84.5 ± 2.3 85.6 ± 2.8 86.8 ± 2.4 86.4 ± 2.2 88.1 ± 2.3 87.7 ± 2.5 

glass7 88.0 ± 3.1 92.7 ± 2.2 89.8 ± 2.7 88.3 ± 2.1 92.5 ± 2.3 93.1 ± 2.0 92.9 ± 1.3 94.7 ± 2.0 

glass3 68.4 ± 2.6 75.1 ± 1.7 74.4 ± 3.2 73.1 ± 1.9 76.8 ± 1.2 77.1 ± 3.2 76.0 ± 2.9 78.3 ± 3.1 

ecoli6 73.5 ± 2.7 95.2 ± 2.4 82.8 ± 2.5 90.9 ± 2.7 92.6 ± 2.4 98.4 ± 2.5 95.6 ± 1.9 98.3 ± 1.4 

car3 83.9 ± 3.3 88.4 ± 3.6 82.7 ± 1.4 85.0 ± 1.6 84.3 ± 3.4 92.4 ± 2.6 91.1 ± 2.1 93.7 ± 1.9 

yeast 71.7 ± 2.5 87.9 ± 2.1 80.3 ± 2.2 82.4 ± 2.1 87.0 ± 1.6 89.1 ± 1.9 89.3 ± 2.4 91.7 ± 2.7 

abalone19 47.5 ± 2.3 56.5 ± 2.4 53.9 ± 2.1 52.7 ± 2.2 58.7 ± 2.7 60.1 ± 2.4 65.5 ± 2.0 68.7 ± 3.2 

Fig. 5. Cumulative frequency ( y -axis) with respect to margin ( x -axis) of ODM, 

ODM-7, ODM-9, CSSVM, AKSSVM, WKSMOTE, LCSDM and KMODM on German data 

set using RBF kernel. 

Fig. 6. CPU time cost on UCI data sets. 
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5. Conclusions 

In this paper, we proposed a classification method named

KMODM based on optimal distribution learning for imbalanced

data. The kernel scaling method was introduced to modify the ker-

nel function of KMODM, and a new conformal transform function

was constructed to improve kernel scaling method for KMODM.

In the conformal function, two free parameters were introduced

to adjust the spatial expansion coefficients of different areas, thus

eliminating the influence of imbalanced data on the performance

of KMODM. The experiment results show that, compared with the

baseline classifiers, the proposed KMODM not only has the higher

detection accuracy of the minority class and more balanced detec-

tion rate, but also inherits the better generalization performance

and higher computation efficiency of ODM. Especially facing heav-

ily imbalanced data, KMODM has obvious superior performance. 

The relationship between two free parameters in conformal

function and training data as well as its estimation methods

are two directions in the future study. Data imbalance is more

common in multi classification tasks, it will be worth in the

future to using kernel scaling method to improve multi-class

ODM. 
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